A WIMPy Baryogenesis Miracle

Baryogenesis via WIMP annihilation

arXiv:1112.2704

Brian Shuve with Yanou Cui and Lisa Randall

Harvard University

University of Chicago Theory Seminar

January 11, 2012

Outline

- Motivation: WIMP miracle and dark matter/baryon ratio
- Review of baryogenesis
- Example: WIMPy leptogenesis
- WIMP annihilation to quarks
- Constraints and detection prospects

Motivation

• No conclusive evidence to date on the nature of the dark matter particle(s)

Motivation

- No conclusive evidence to date on the nature of the dark matter particle(s)
- Astrophysical observations hint at possible connections between dark and visible sectors
 - Observed abundance of dark matter is the same as thermal relic density of a particle with weak scale mass and couplings
 - * The WIMP miracle
 - ② Dark matter/baryon ratio: $\Omega_{\rm DM} \approx 5 \, \Omega_{\rm baryon}$

Motivation

- No conclusive evidence to date on the nature of the dark matter particle(s)
- Astrophysical observations hint at possible connections between dark and visible sectors
 - Observed abundance of dark matter is the same as thermal relic density of a particle with weak scale mass and couplings
 - * The WIMP miracle
 - ② Dark matter/baryon ratio: $\Omega_{\rm DM} \approx 5 \, \Omega_{\rm baryon}$
- Our models incorporate both observations
 - Oark matter abundance: Established by thermal freeze-out according to the WIMP miracle
 - Oark matter/baryon ratio: Dark matter annihilation generates a baryon asymmetry
 - ★ Connection between the dark and visible sector abundances
- For a model incorporating the WIMP miracle in baryogenesis in a different way than WIMPy baryogenesis, see McDonald, 1009.3227 and 1108.4653

- Consider a stable, weakly interacting massive particle (WIMP)
 - What happens as the universe expands and cools?

- Consider a stable, weakly interacting massive particle (WIMP)
 - What happens as the universe expands and cools?
- At $T > m_{WIMP}$, all fields are in equilibrium
 - $\blacktriangleright \ \, \mathsf{Dark} \,\, \mathsf{matter} \,\, (\mathsf{WIMP}) \leftrightarrow \mathsf{Standard} \,\, \mathsf{Model} \,\, (\mathsf{SM}) \,\, \mathsf{scattering} \,\, \mathsf{occur} \,\, \mathsf{at} \,\, \mathsf{equal} \,\, \mathsf{rates}$

- Consider a stable, weakly interacting massive particle (WIMP)
 - What happens as the universe expands and cools?
- At $T>m_{\rm WIMP}$, all fields are in equilibrium
 - $\blacktriangleright \ \, \mathsf{Dark} \,\, \mathsf{matter} \,\, (\mathsf{WIMP}) \leftrightarrow \mathsf{Standard} \,\, \mathsf{Model} \,\, (\mathsf{SM}) \,\, \mathsf{scattering} \,\, \mathsf{occur} \,\, \mathsf{at} \,\, \mathsf{equal} \,\, \mathsf{rates}$
- ullet Thermal freeze-out: for $T < m_{
 m WIMP}$, SM fields are no longer energetic enough to annihilate into WIMPs
 - WIMP density depleted
 - ▶ WIMP particles eventually unable to find one another to annihilate

- Consider a stable, weakly interacting massive particle (WIMP)
 - ▶ What happens as the universe expands and cools?
- At $T>m_{\rm WIMP}$, all fields are in equilibrium
 - $\blacktriangleright \ \, \mathsf{Dark} \,\, \mathsf{matter} \,\, (\mathsf{WIMP}) \leftrightarrow \mathsf{Standard} \,\, \mathsf{Model} \,\, (\mathsf{SM}) \,\, \mathsf{scattering} \,\, \mathsf{occur} \,\, \mathsf{at} \,\, \mathsf{equal} \,\, \mathsf{rates}$
- \bullet Thermal freeze-out: for $T < m_{\rm WIMP},$ SM fields are no longer energetic enough to annihilate into WIMPs
 - WIMP density depleted
 - ▶ WIMP particles eventually unable to find one another to annihilate

 Relic abundance inversely proportional to annihilation cross section

$$\Omega_{\rm WIMP} \approx \Omega_{\rm DM} \, \frac{1 \, \, {\rm pb}}{\langle \sigma_{\rm ann} \, v \rangle}$$

- In WIMP miracle framework, $\Omega_{\rm DM} \sim \Omega_{\rm baryon}$ is a coincidence
 - ▶ Baryonic matter abundance is determined by a matter-antimatter asymmetry
 - In conventional WIMP picture, asymmetry generation and dark matter annihilation are independent processes

- In WIMP miracle framework, $\Omega_{\rm DM} \sim \Omega_{\rm baryon}$ is a coincidence
 - ▶ Baryonic matter abundance is determined by a matter-antimatter asymmetry
 - In conventional WIMP picture, asymmetry generation and dark matter annihilation are independent processes
- Models accounting for the dark matter/baryon ratio typically ignore the WIMP miracle
 - Most common explanation is asymmetric dark matter (Nussinov 1985; Kaplan, Luty, Zurek 2009;...)
 - Both dark matter and baryons have their origin in a primordial excess of matter over antimatter

- In WIMP miracle framework, $\Omega_{\rm DM} \sim \Omega_{\rm baryon}$ is a coincidence
 - ▶ Baryonic matter abundance is determined by a matter-antimatter asymmetry
 - In conventional WIMP picture, asymmetry generation and dark matter annihilation are independent processes
- Models accounting for the dark matter/baryon ratio typically ignore the WIMP miracle
 - Most common explanation is asymmetric dark matter (Nussinov 1985; Kaplan, Luty, Zurek 2009;...)
 - Both dark matter and baryons have their origin in a primordial excess of matter over antimatter
- Can we have some features of symmetric dark matter while also establishing a connection between the dark matter and baryon abundances?

WIMPy baryogenesis:

- ► Conventional WIMP thermal relic (abundance given by WIMP miracle)
- Baryon asymmetry generated by WIMP annihilation

WIMPy baryogenesis:

- Conventional WIMP thermal relic (abundance given by WIMP miracle)
- Baryon asymmetry generated by WIMP annihilation

- WIMPy baryogenesis is nice because it
 - ► Ties all dark matter and baryogenesis physics to the weak scale
 - * Possible weak scale origin of new fields and couplings?
 - ► Gives indirect detection signals of conventional symmetric WIMP dark matter
 - Incorporates baryogenesis by annihilation, which has often been overlooked
 - * Proposed by Bento, Berezhiani 2001; Gu, Sarkar 2009

- Three Sakharov conditions must be satisfied to generate an asymmetry
 - Violation of baryon number
 - $oldsymbol{2}$ Violation of C and CP symmetries
 - Oeparture from thermal equilibrium

- Three Sakharov conditions must be satisfied to generate an asymmetry
 - Violation of baryon number
 - $oldsymbol{2}$ Violation of C and CP symmetries
 - 3 Departure from thermal equilibrium
- All three conditions are satisfied in the Standard Model but
 - ▶ CP violation not big enough (suppressed by 12 Yukawa couplings $\sim 10^{-20}$)
 - Phase transition not first order

 Many possible mechanisms have been proposed from minimal extensions of the Standard Model

- Many possible mechanisms have been proposed from minimal extensions of the Standard Model
- Example: Leptogenesis through the decay of RH Majorana neutrinos

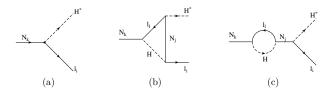
$$\Delta \mathcal{L} = y_{\nu ij} L_i H N_j + M_{N i} N_i N_i \qquad m_{\nu} \sim \frac{y_{\nu}^2 v^2}{M_N}$$

- Many possible mechanisms have been proposed from minimal extensions of the Standard Model
- Example: Leptogenesis through the decay of RH Majorana neutrinos

$$\Delta \mathcal{L} = y_{\nu ij} L_i H N_j + M_{N i} N_i N_i \qquad m_{\nu} \sim \frac{y_{\nu}^2 v^2}{M_N}$$

lacktriangledown B or L violation: Majorana mass of RH neutrino violates L, lepton asymmetry transferred to B by sphalerons

- Many possible mechanisms have been proposed from minimal extensions of the Standard Model
- Example: Leptogenesis through the decay of RH Majorana neutrinos


$$\Delta \mathcal{L} = y_{\nu ij} L_i H N_j + M_{N i} N_i N_i \qquad m_{\nu} \sim \frac{y_{\nu}^2 v^2}{M_N}$$

- ② CP violation: CP-violating phases in y_{ν}

- Many possible mechanisms have been proposed from minimal extensions of the Standard Model
- Example: Leptogenesis through the decay of RH Majorana neutrinos

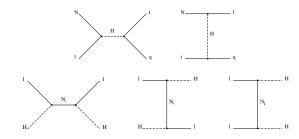
$$\Delta \mathcal{L} = y_{\nu ij} L_i H N_j + M_{N i} N_i N_i \qquad m_{\nu} \sim \frac{y_{\nu}^2 v^2}{M_N}$$

- lacksquare B or L violation: Majorana mass of RH neutrino violates L, lepton asymmetry transferred to B by sphalerons
- \bigcirc *CP* violation: *CP*-violating phases in u_{ν}
- \odot Departure from equilibrium: N decays out of equilibrium
- If we only considered tree level diagram, CP phases disappear with $|\mathcal{M}|^2$
 - Need to consider interference of tree and loop diagrams

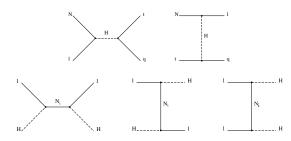
ullet CP violation gives a difference rate between $N_1 o HL_1$ and $N_1 o H^*L_1^\dagger$

- ullet CP violation gives a difference rate between $N_1 o HL_1$ and $N_1 o H^*L_1^\dagger$
- ullet Define ϵ , the fractional asymmetry produced per decay to L

$$\epsilon \equiv \frac{\Gamma(N_1 \to HL_1) - \Gamma(N_1 \to H^*L_1^{\dagger})}{\Gamma(N_1 \to HL_1) + \Gamma(N_1 \to H^*L_1^{\dagger})}$$


- ullet CP violation gives a difference rate between $N_1 o HL_1$ and $N_1 o H^*L_1^\dagger$
- ullet Define ϵ , the fractional asymmetry produced per decay to L

$$\epsilon \equiv \frac{\Gamma(N_1 \to HL_1) - \Gamma(N_1 \to H^*L_1^{\dagger})}{\Gamma(N_1 \to HL_1) + \Gamma(N_1 \to H^*L_1^{\dagger})}$$


$$\sim \frac{1}{4\pi} \frac{\text{Im}(y_{\nu \, 11}^* y_{\nu \, i1}^* y_{\nu \, ij} y_{\nu \, 1j})}{|y_{\nu \, 11}|^2} \frac{m_{N1}}{m_{Ni}}$$

- **1** B or L violation: Majorana mass of RH neutrino violates $L \checkmark$
- ② CP violation: CP-violating phases in y_{ν} \checkmark

- lacktriangledown B or L violation: Majorana mass of RH neutrino violates L \checkmark
- ② CP violation: CP-violating phases in y_{ν} \checkmark
- Departure from thermal equilibrium:
 - Two necessary components:
 - lacktriangle Cooling of universe results in net N decays
 - Washout scatterings must go out of equilibrium

- **1** B or L violation: Majorana mass of RH neutrino violates $L \checkmark$
- ② CP violation: CP-violating phases in y_{ν} \checkmark
- Departure from thermal equilibrium:
 - Two necessary components:
 - lacksquare Cooling of universe results in net N decays
 - Washout scatterings must go out of equilibrium

- Asymmetry proportional to number of decays that happen after washout freezes out (at $T \ll m_{N1}$)
 - ▶ N_1 lifetime longer than Hubble time at $T = m_{N1}$ ($\Gamma_{N1} < H(m_{N1})$)

WIMPy leptogenesis

• WIMPy leptogenesis: leptogenesis from WIMP annihilation

- WIMPy leptogenesis: leptogenesis from WIMP annihilation
- WIMP annihilation can satisfy the Sakharov conditions
 - L violation: WIMP dark matter annihilates through Standard Model lepton number violating couplings
 - $oldsymbol{@}$ CP violation: Physical CP phases in annihilation amplitudes
 - Oeparture from thermal equilibrium

- WIMPy leptogenesis: leptogenesis from WIMP annihilation
- WIMP annihilation can satisfy the Sakharov conditions
 - L violation: WIMP dark matter annihilates through Standard Model lepton number violating couplings
 - $oldsymbol{@}$ CP violation: Physical CP phases in annihilation amplitudes
 - 3 Departure from thermal equilibrium
 - ★ For $T < m_{\rm DM}$, have net dark matter annihilation
 - Need washout to go out of equilibrium
 - * Final asymmetry proportional to DM relic density when washout freezes out

- WIMPy leptogenesis: leptogenesis from WIMP annihilation
- WIMP annihilation can satisfy the Sakharov conditions
 - L violation: WIMP dark matter annihilates through Standard Model lepton number violating couplings
 - $oldsymbol{@}$ CP violation: Physical CP phases in annihilation amplitudes
 - 3 Departure from thermal equilibrium
 - ***** For $T < m_{\mathrm{DM}}$, have net dark matter annihilation
 - Need washout to go out of equilibrium
 - * Final asymmetry proportional to DM relic density when washout freezes out
- How can washout go out of equilibrium sufficiently early?
 - One of lepton-number-carrying fields is heavy or washout cross section much smaller than annihilation cross section

WIMPy leptogenesis: model

• Dark matter annihilates to leptons

WIMPy leptogenesis: model

- Dark matter annihilates to leptons
- Lepton asymmetry transferred to baryon asymmetry by sphalerons
 - ▶ Sphalerons ineffective after electroweak phase transition $(T_c \sim 100 \; \mathrm{GeV})$
 - ▶ Model-independent constraint: $T_{\rm lepto} > T_{\rm electroweak} \rightarrow m_X \gtrsim {\rm TeV}$

WIMPy leptogenesis: model

- Dark matter annihilates to leptons
- Lepton asymmetry transferred to baryon asymmetry by sphalerons
 - ▶ Sphalerons ineffective after electroweak phase transition $(T_c \sim 100 \; \mathrm{GeV})$
 - ▶ Model-independent constraint: $T_{\rm lepto} > T_{\rm electroweak} \rightarrow m_X \gtrsim {\rm TeV}$

Minimal set-up:

- ullet Singlet fermion dark matter X
- ullet Dark matter annihilates to lepton doublet field L
- ullet Easiest way to break lepton number: only create one L through annihilation!

- Dark matter annihilates to leptons
- Lepton asymmetry transferred to baryon asymmetry by sphalerons
 - ▶ Sphalerons ineffective after electroweak phase transition ($T_c \sim 100 \; \mathrm{GeV}$)
 - ▶ Model-independent constraint: $T_{\rm lepto} > T_{\rm electroweak} \rightarrow m_X \gtrsim {\rm TeV}$

Minimal set-up:

- ullet Singlet fermion dark matter X
- ullet Dark matter annihilates to lepton doublet field L
- ullet Easiest way to break lepton number: only create one L through annihilation!
- Simplest effective operator:

$$\Delta \mathcal{L} \sim \frac{1}{\Lambda^2} \, X^2 \, L \, \psi$$

- Dark matter annihilates to leptons
- Lepton asymmetry transferred to baryon asymmetry by sphalerons
 - ▶ Sphalerons ineffective after electroweak phase transition $(T_c \sim 100 \text{ GeV})$
 - ▶ Model-independent constraint: $T_{\rm lepto} > T_{\rm electroweak} \rightarrow m_X \gtrsim {\rm TeV}$

Minimal set-up:

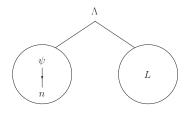
- ullet Singlet fermion dark matter X
- ullet Dark matter annihilates to lepton doublet field L
- ullet Easiest way to break lepton number: only create one L through annihilation!
- Simplest effective operator:

$$\Delta \mathcal{L} \sim \frac{1}{\Lambda^2} X^2 L \psi$$

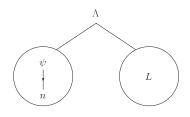
- ullet New field ψ
 - ψ is a doublet with hypercharge +1/2
 - ightharpoonup To allow the widest possible range of masses, take ψ to be vectorlike

$$\Delta \mathcal{L} \sim \frac{1}{\Lambda^2} \, X^2 \, L \, \psi$$

$$\Delta \mathcal{L} \sim \frac{1}{\Lambda^2} X^2 L \psi$$


- $\bullet~{\rm U}(1)$ symmetry under which $L,~\psi$ oppositely charged
- ullet Annihilations can generate L asymmetry, along with equal ψ asymmetry
 - ▶ No generalized lepton asymmetry, but can get a SM lepton asymmetry

$$\Delta \mathcal{L} \sim \frac{1}{\Lambda^2} X^2 L \psi$$


- ullet U(1) symmetry under which L, ψ oppositely charged
- ullet Annihilations can generate L asymmetry, along with equal ψ asymmetry
 - ▶ No generalized lepton asymmetry, but can get a SM lepton asymmetry
- Two concerns:
 - **①** Too much ψ at late times (LEP bound on doublets: $m_{\psi} \gtrsim 90$ GeV)
 - $oldsymbol{arphi}$ could decay/scatter into Standard Model leptons and wipe out asymmetry

$$\Delta \mathcal{L} \sim \frac{1}{\Lambda^2} X^2 L \psi$$

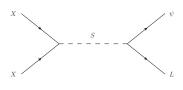
- ullet U(1) symmetry under which L, ψ oppositely charged
- ullet Annihilations can generate L asymmetry, along with equal ψ asymmetry
 - ▶ No generalized lepton asymmetry, but can get a SM lepton asymmetry
- Two concerns:
 - ① Too much ψ at late times (LEP bound on doublets: $m_{\psi} \gtrsim 90$ GeV)
 - $oldsymbol{arphi}$ could decay/scatter into Standard Model leptons and wipe out asymmetry
- Two possible solutions:
 - Two sectors with separately preserved asymmetries
 - ***** Simplest ψ decay: $\psi \to H n$, where n is a singlet
 - \bullet ψ decays with U(1)-violating couplings

• Also want dark matter stability

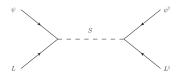
- Also want dark matter stability
- Minimal solution: Z_4 symmetry
 - ▶ Charge of X = i
 - $\qquad \qquad \textbf{ Charge of } \psi = -1$
 - ▶ Charge of SM fields = +1
- ullet Since X has a Z_4 charge, it must be Dirac

A minimal "complete" model:

• We choose the simplest UV completion: effective operator arises from exchange of pseudoscalars S_{α}

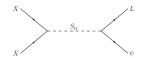

$$\mathcal{L} \supset \frac{i}{2} (\lambda_{X\alpha} X^2 + \lambda'_{X\alpha} \bar{X}^2) S_{\alpha} + i \lambda_{L\alpha} L \psi S_{\alpha} + \text{h.c.}$$

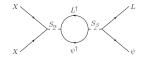
• A minimal "complete" model:

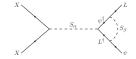

• We choose the simplest UV completion: effective operator arises from exchange of pseudoscalars S_{α}

$$\mathcal{L} \supset \frac{i}{2} (\lambda_{X\alpha} X^2 + \lambda'_{X\alpha} \bar{X}^2) S_{\alpha} + i \lambda_{L\alpha} L \psi S_{\alpha} + \text{h.c.}$$

Annihilation and washout scatterings:

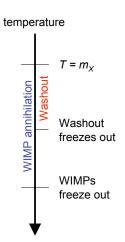

$$\sigma_{\rm ann} \sim |\lambda_X|^2 |\lambda_L|^2$$




$$\sigma_{\rm washout} \sim |\lambda_L|^4$$

lacktriangle Baryon number violation \checkmark

- Baryon number violation
- OP violation:
 - ▶ CP phases in couplings λ_X , λ_L
 - Interference of tree and loop diagrams



 \bullet Must have at least two generations of S for non-zero CP phase in amplitude

- Baryon number violation
- \bigcirc CP violation \checkmark

- Baryon number violation √
- ② CP violation ✓
- Departure from thermal equilibrium?

- Asymmetry generated while DM annihilates
- Washout eliminates asymmetry as it accumulates
- Need to have washout freeze out during era of rapid WIMP annihilation

• To determine the asymmetry and WIMP relic abundance, we need to know the evolution of particle abundances and of interaction rates

- To determine the asymmetry and WIMP relic abundance, we need to know the evolution of particle abundances and of interaction rates
- Define dimensionless variables:
 - ▶ Inverse temperature, $z = m_X/T$
 - Number density per comoving volume, $Y_i(z) = n_i(z)/s(z)$ (s is entropy density)

- To determine the asymmetry and WIMP relic abundance, we need to know the evolution of particle abundances and of interaction rates
- Define dimensionless variables:
 - ▶ Inverse temperature, $z = m_X/T$
 - Number density per comoving volume, $Y_i(z) = n_i(z)/s(z)$ (s is entropy density)
- \bullet Initially (z \lesssim 1), particles start in equilibrium and follow equilibrium distribution

$$Y_i^{\text{eq}} \sim \text{constant}$$
 $(z \ll 1)$

- To determine the asymmetry and WIMP relic abundance, we need to know the evolution of particle abundances and of interaction rates
- Define dimensionless variables:
 - ▶ Inverse temperature, $z = m_X/T$
 - Number density per comoving volume, $Y_i(z) = n_i(z)/s(z)$ (s is entropy density)
- \bullet Initially (z \lesssim 1), particles start in equilibrium and follow equilibrium distribution

$$Y_i^{\text{eq}} \sim \text{constant}$$
 $(z \ll 1)$
 $\sim z^{3/2} e^{-z}$ $(z \gg 1)$

- To determine the asymmetry and WIMP relic abundance, we need to know the evolution of particle abundances and of interaction rates
- Define dimensionless variables:
 - ▶ Inverse temperature, $z = m_X/T$
 - Number density per comoving volume, $Y_i(z) = n_i(z)/s(z)$ (s is entropy density)
- \bullet Initially (z \lesssim 1), particles start in equilibrium and follow equilibrium distribution

$$Y_i^{\text{eq}} \sim \text{constant}$$
 $(z \ll 1)$
 $\sim z^{3/2} e^{-z}$ $(z \gg 1)$

- At $z \gg 1$, X and lepton asymmetry (ΔL) go out of equilibrium
 - ▶ Determines WIMP relic abundance and baryon asymmetry

• Evolution of Y_X and $Y_{\Delta L}$:

Boltzmann equations:

$$\frac{dY_a}{dz} = -\frac{(2\pi)^4}{z H(z) s(z)} \int d\Pi_a d\Pi_b d\Pi_c d\Pi_d |\mathcal{M}_{ab\to cd}|^2 \delta^4(\sum p) (f_a f_b - f_c f_d)$$

ullet Integral over phase space; f_i is phase space density of species i

• Evolution of Y_X and $Y_{\Delta L}$:

Boltzmann equations:

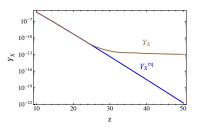
$$\frac{dY_a}{dz} = -\frac{(2\pi)^4}{z H(z) s(z)} \int d\Pi_a d\Pi_b d\Pi_c d\Pi_d |\mathcal{M}_{ab\to cd}|^2 \delta^4(\sum p) (f_a f_b - f_c f_d)$$

- Integral over phase space; f_i is phase space density of species i
- WIMP evolution:
 - ▶ Collision term proportional to annihilation cross section $\langle \sigma_{XX \to L\psi} v \rangle$
 - lacktriangle Drives Y_X to equilibrium value when scattering is rapid
 - ▶ Proportional to the *square* of the *X* distribution

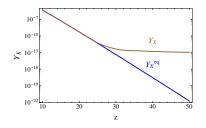
• Evolution of Y_X and $Y_{\Delta L}$:

Boltzmann equations:

$$\frac{dY_a}{dz} = -\frac{(2\pi)^4}{zH(z)s(z)} \int d\Pi_a d\Pi_b d\Pi_c d\Pi_d |\mathcal{M}_{ab\to cd}|^2 \delta^4(\sum p)(f_a f_b - f_c f_d)$$


- Integral over phase space; f_i is phase space density of species i
- WIMP evolution:
 - lacktriangle Collision term proportional to annihilation cross section $\langle \sigma_{XX o L\psi} \, v \rangle$
 - lacktriangle Drives Y_X to equilibrium value when scattering is rapid
 - ▶ Proportional to the *square* of the *X* distribution

$$\frac{dY_X}{dz} \sim -\langle \sigma_{XX \to L\psi} \, v \rangle \left[Y_X^2 - (Y_X^{\text{eq}})^2 \right]$$


ullet If the baryon asymmetry is small, there is no back-reaction on Y_X

• We get the conventional WIMP equation

•
$$Y_X(z=\infty) \sim 1/\langle \sigma_{XX\to L\psi} v \rangle$$

- We get the conventional WIMP equation
 - $Y_X(z=\infty) \sim 1/\langle \sigma_{XX\to L\psi} \, v \rangle$

- For z>1, we want $dY_X/dz\approx dY_X^{\rm eq}/dz$ if X tracks its equilibrium distribution
 - ▶ This implies a departure of X from thermal equilibrium!
 - Integrating the deviation from equilibrium over z gives ΔY_X , the total number of DM particles annihilated

WIMPy leptogenesis: lepton asymmetry evolution

- Lepton asymmetry evolution:
 - ► Two important terms:
 - * Asymmetry generation by XX annihilation (proportional to fractional asymmetry per annihilation ϵ)
 - * Asymmetry depletion by $L\psi \to L^\dagger \psi^\dagger$

WIMPy leptogenesis: lepton asymmetry evolution

• Lepton asymmetry evolution:

- ► Two important terms:
 - * Asymmetry generation by XX annihilation (proportional to fractional asymmetry per annihilation ϵ)
 - \star Asymmetry depletion by $L\psi \to L^\dagger \psi^\dagger$

$$\frac{dY_{\Delta L}}{dz} \sim +\epsilon \times (\text{WIMP ann. rate}) - Y_{\Delta L} \times (\text{washout rate})$$

WIMPy leptogenesis: lepton asymmetry evolution

• Lepton asymmetry evolution:

- ► Two important terms:
 - * Asymmetry generation by XX annihilation (proportional to fractional asymmetry per annihilation ϵ)
 - * Asymmetry depletion by $L\psi \to L^{\dagger}\psi^{\dagger}$

$$\frac{dY_{\Delta L}}{dz} \sim +\epsilon \times (\text{WIMP ann. rate}) - Y_{\Delta L} \times (\text{washout rate})$$

$$\sim -\epsilon \frac{dY_X}{dz} - Y_{\Delta L} \langle \sigma_{L\psi \to L^\dagger \psi^\dagger} \, v \rangle Y_L^{\text{eq}} \, Y_\psi^{\text{eq}}$$

$$\frac{dY_{\Delta L}}{dz} \sim -\epsilon \frac{dY_X}{dz} - Y_{\Delta L} \langle \sigma_{L\psi \to L^{\dagger}\psi^{\dagger}} v \rangle Y_L^{\text{eq}} Y_{\psi}^{\text{eq}}$$

 While annihilation is occurring, there is competition between asymmetry generation and washout

$$\frac{dY_{\Delta L}}{dz} \sim -\epsilon \, \frac{dY_X}{dz} - Y_{\Delta L} \langle \sigma_{L\psi \to L^\dagger \psi^\dagger} \, v \rangle \, Y_L^{\rm eq} \, Y_\psi^{\rm eq} \label{eq:equation_for_property}$$

- While annihilation is occurring, there is competition between asymmetry generation and washout
 - ► Early times: there is an instantaneous steady-state solution found by balancing the rates of asymmetry creation and depletion

$$Y_{\Delta L}(z) \sim \frac{\text{generation rate}}{\text{washout rate}} \sim \frac{1}{\langle \sigma_{L\psi \to L^{\dagger}\psi^{\dagger}} v \rangle Y_L^{\text{eq}} Y_{\psi}^{\text{eq}}} \left(-\epsilon \frac{dY_X}{dz} \right)$$

$$\frac{dY_{\Delta L}}{dz} \sim -\epsilon \frac{dY_X}{dz} - Y_{\Delta L} \langle \sigma_{L\psi \to L^{\dagger}\psi^{\dagger}} v \rangle Y_L^{\text{eq}} Y_{\psi}^{\text{eq}}$$

- While annihilation is occurring, there is competition between asymmetry generation and washout
 - **Early times:** there is an instantaneous steady-state solution found by balancing the rates of asymmetry creation and depletion

$$Y_{\Delta L}(z) \sim \frac{\text{generation rate}}{\text{washout rate}} \sim \frac{1}{\langle \sigma_{L\psi \to L^{\dagger}\psi^{\dagger}} v \rangle Y_L^{\text{eq}} Y_{\psi}^{\text{eq}}} \left(-\epsilon \frac{dY_X}{dz} \right)$$

 dY_X/dz is decreasing, so asymmetry driven to very small values

★ Too small for observed baryon asymmetry

$$\frac{dY_{\Delta L}}{dz} \sim -\epsilon \frac{dY_X}{dz} - Y_{\Delta L} \langle \sigma_{L\psi \to L^{\dagger}\psi^{\dagger}} v \rangle Y_L^{\text{eq}} Y_{\psi}^{\text{eq}}$$

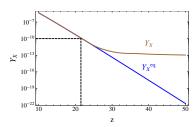
- While annihilation is occurring, there is competition between asymmetry generation and washout
 - ► Early times: there is an instantaneous steady-state solution found by balancing the rates of asymmetry creation and depletion

$$Y_{\Delta L}(z) \sim \frac{\text{generation rate}}{\text{washout rate}} \sim \frac{1}{\left\langle \sigma_{L\psi \to L^\dagger \psi^\dagger} \, v \right\rangle Y_L^{\text{eq}} \, Y_\psi^{\text{eq}}} \left(-\epsilon \, \frac{dY_X}{dz} \right)$$

 dY_X/dz is decreasing, so asymmetry driven to very small values

- ★ Too small for observed baryon asymmetry
- **Late times:** define z_0 as the time when washout processes freeze out
 - ★ We're left with the equation

$$\frac{dY_{\Delta L}}{dz} \sim -\epsilon \frac{dY_X}{dz} \qquad (z > z_0)$$


$$Y_{\Delta L}(\infty) \approx \epsilon \left[Y_X(z_0) - Y_X(\infty) \right]$$

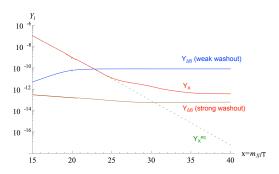
$$Y_{\Delta L}(\infty) \approx \epsilon \left[Y_X(z_0) - Y_X(\infty) \right]$$

- Asymmetry proportional to change in X density after washout processes freeze out
- If washout freezes out before WIMP freeze-out, $Y_X(z_0) \gg Y_X(\infty)$, and asymmetry is proportional to dark matter number at time of washout freeze-out

$$Y_{\Delta L}(\infty) \approx \epsilon \left[Y_X(z_0) - Y_X(\infty) \right]$$

- Asymmetry proportional to change in X density after washout processes freeze out
- If washout freezes out before WIMP freeze-out, $Y_X(z_0)\gg Y_X(\infty)$, and asymmetry is proportional to dark matter number at time of washout freeze-out

- Washout must freeze out before annihilations cease
- ullet Washout freezes out when washout rate \lesssim Hubble scale
- Washout rate $\sim \langle \sigma_{L\psi \to L^\dagger \psi^\dagger} \, v \rangle \, Y_L^{\mathrm{eq}} \, Y_\psi^{\mathrm{eq}}$


$$Y_{\Delta L} \sim 10^{-10}$$
 and $\epsilon < 1 \implies z_0 \lesssim 20$

 \bullet Washout rate $\sim \left<\sigma_{L\psi\to L^\dagger\psi^\dagger}\,v\right>Y_L^{\rm eq}\,Y_\psi^{\rm eq}$

- Washout rate $\sim \langle \sigma_{L\psi \to L^\dagger \psi^\dagger} \, v \rangle \, Y_L^{\mathrm{eq}} \, Y_\psi^{\mathrm{eq}}$
- Two possibilities for successful baryogenesis:
 - **1** Heavy m_{ψ} so that Y_{ψ}^{eq} is exponentially suppressed

WIMPy leptogenesis: asymmetry

- Washout rate $\sim \langle \sigma_{L\psi \to L^\dagger \psi^\dagger} \, v \rangle \, Y_L^{\rm eq} \, Y_\psi^{\rm eq}$
- Two possibilities for successful baryogenesis:
 - $lackbox{0}$ Heavy m_{ψ} so that Y_{ψ}^{eq} is exponentially suppressed

- ullet Washout freezes out before WIMPs o weak washout
- ullet Washout freezes out after WIMPs o strong washout

WIMPy leptogenesis

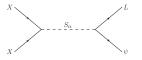
Recap so far:

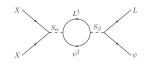
- Baryogenesis through WIMP annihilation is possible if
 - ► Annihilation occurs through *L*-violating coupling
 - ▶ Non-zero *CP* phases in *L*-violating coupling
- Need washout to freeze out while WIMP annihilation is still active
- WIMPs described by equilibrium distribution during this time!

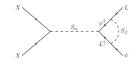
• CP-violating factor: fractional asymmetry generated by each annihilation

$$\epsilon = \frac{\sigma(XX \to \psi_i L_i) - \sigma(XX \to \psi_i^{\dagger} L_i^{\dagger})}{\sigma(XX \to \psi_i L_i) + \sigma(XX \to \psi_i^{\dagger} L_i^{\dagger})}$$

ullet CP-violating factor: fractional asymmetry generated by each annihilation

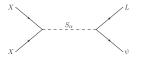

$$\epsilon = \frac{\sigma(XX \to \psi_i L_i) - \sigma(XX \to \psi_i^{\dagger} L_i^{\dagger})}{\sigma(XX \to \psi_i L_i) + \sigma(XX \to \psi_i^{\dagger} L_i^{\dagger})}$$

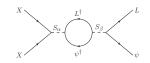

• Many free parameters! Make assumptions to include minimal ingredients, simplify analysis:

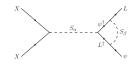

ullet CP-violating factor: fractional asymmetry generated by each annihilation

$$\epsilon = \frac{\sigma(XX \to \psi_i L_i) - \sigma(XX \to \psi_i^{\dagger} L_i^{\dagger})}{\sigma(XX \to \psi_i L_i) + \sigma(XX \to \psi_i^{\dagger} L_i^{\dagger})}$$

- Many free parameters! Make assumptions to include minimal ingredients, simplify analysis:
 - ▶ Only one flavour of lepton relevant for WIMPy leptogenesis
 - lacktriangle Annihilation through the lightest scalar S_1 is dominant
 - Phases are large

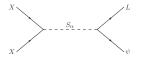


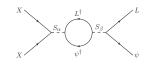


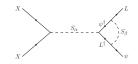


• With these assumptions:

$$\epsilon \sim -\frac{1}{4\pi} \, \frac{\mathrm{Im}(\lambda_{L1}^2 \lambda_{L2}^{*2})}{|\lambda_{L1}^2|} \, \frac{(2m_X)^2}{m_{\mathrm{S2}}^2} f\left(\frac{m_\psi}{2m_X}\right)$$




• With these assumptions:


$$\epsilon \sim -\frac{1}{4\pi} \, \frac{\mathrm{Im}(\lambda_{L1}^2 \lambda_{L2}^{*2})}{|\lambda_{L1}^2|} \, \frac{(2m_X)^2}{m_{S2}^2} f\left(\frac{m_\psi}{2m_X}\right)$$

• The requirement of dominant scattering through S_1 (assume $\sigma_{S2} < 0.2\sigma_{S1}$) gives a bound on ϵ :

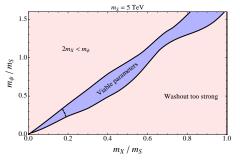
$$|\epsilon| \lesssim \frac{2\lambda_{L1}^2 m_X^2}{3\pi \sqrt{5} m_{S1}^2} \, f\left(\frac{m_\psi}{2m_X}\right)$$

• With these assumptions:

$$\epsilon \sim -\frac{1}{4\pi} \, \frac{\mathrm{Im}(\lambda_{L1}^2 \lambda_{L2}^{*2})}{|\lambda_{L1}^2|} \, \frac{(2m_X)^2}{m_{S2}^2} f\left(\frac{m_\psi}{2m_X}\right)$$

• The requirement of dominant scattering through S_1 (assume $\sigma_{S2} < 0.2\sigma_{S1}$) gives a bound on ϵ :

$$|\epsilon| \lesssim \frac{2\lambda_{L1}^2 m_X^2}{3\pi\sqrt{5}m_{S1}^2} f\left(\frac{m_\psi}{2m_X}\right)$$


- \bullet Masses and couplings of heavy S_α contribute only indirectly through loop effects to ϵ
 - Use ϵ as a free parameter, subject to bound

Numerical results: masses

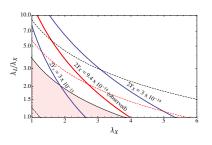
- ullet 6 parameters: m_X , m_ψ , m_S , λ_X , λ_L , and ϵ
- Show masses for which WIMPy leptogenesis gives correct relic density and asymmetry with perturbative couplings λ_L , λ_X , and ϵ

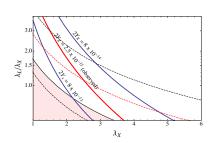
Numerical results: masses

- ullet 6 parameters: m_X , m_ψ , m_S , λ_X , λ_L , and ϵ
- Show masses for which WIMPy leptogenesis gives correct relic density and asymmetry with perturbative couplings λ_L , λ_X , and ϵ

• X and ψ mass constrained to lie close together (within $m_{\psi} \sim 1 - 2 m_{X}$)

- $m_S = 5 \text{ TeV}$
- ullet Asymmetry should be generated before sphalerons decouple $\Rightarrow m_X \gtrsim {\sf TeV}$
 - ▶ Dashed line in figure for Standard Model electroweak phase transition


Numerical results: couplings


- Choose points in middle of parameter space:
 - $m_S=5$ TeV for both plots

Numerical results: couplings

- Choose points in middle of parameter space:
 - $m_S = 5$ TeV for both plots
 - $m_X=4.25$ TeV, $m_\psi=7.5$ TeV, and $\epsilon=0.075$

• $m_X=1.5$ TeV, $m_\psi=2.25$ TeV, and $\epsilon=0.0075$

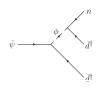
- Solid lines: X relic abundance
- Dotted lines: baryon asymmetry (from top, $Y_{\Delta B}=3\times 10^{-11}$, 8.85×10^{-11} , 3×10^{-10})
- Shaded region inconsistent with assumptions

- Constructed a concrete model of leptogenesis through WIMP annihilation
- Get correct WIMP relic density and baryon asymmetry with:
 - ▶ All masses $\mathcal{O}(\text{TeV})$
 - All couplings $\gtrsim 1$
 - lacktriangle Sufficiently large asymmetry in region with $m_X \sim m_\psi$
- Limitation: $T_{\text{lepto}} > T_{\text{electroweak}}$

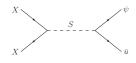
Annihilation to quarks

- Consider model similar to leptogenesis
 - lackbox WIMP annihilation to up quark ar u; ψ is colour triplet with charge +2/3

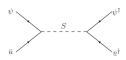
Annihilation to quarks


- Consider model similar to leptogenesis
 - ▶ WIMP annihilation to up quark \bar{u} ; ψ is colour triplet with charge +2/3
 - ψ can accumulate an asymmetry o allow ψ to decay

- ψ decays through operator $\bar{\psi} \bar{d} \bar{d} n / \Lambda^2$ to quarks, singlet n
 - lacktriangle ex. decay through coloured scalar ϕ


Annihilation to quarks

- Consider model similar to leptogenesis
 - ▶ WIMP annihilation to up quark \bar{u} ; ψ is colour triplet with charge +2/3
 - lacktriangledown ψ can accumulate an asymmetry o allow ψ to decay



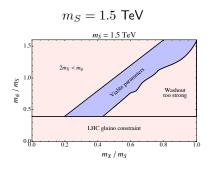
- ψ decays through operator $\bar{\psi} \bar{d} \bar{d} n / \Lambda^2$ to quarks, singlet n
 - $\,\blacktriangleright\,$ ex. decay through coloured scalar ϕ

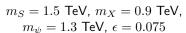
$$\Delta \mathcal{L} = +\frac{i}{2} \left(\lambda_{X\alpha} X^2 + \lambda'_{X\alpha} \bar{X}^2 \right) S_{\alpha} + i \lambda_{B\alpha i} S_{\alpha} \bar{u}_i \psi_i + \text{h.c.}$$

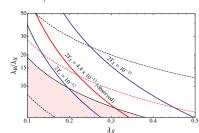
$$\sigma_{\rm ann} \sim |\lambda_X|^2 |\lambda_B|^2$$

$$\sigma_{\rm washout} \sim |\lambda_B|^4$$

Annihilation to quarks: numerical results

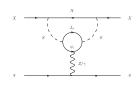

 \bullet 6 parameters: m_X , m_ψ , m_S , λ_X , λ_B , and ϵ


Annihilation to quarks: numerical results


- ullet 6 parameters: m_X , m_ψ , m_S , λ_X , λ_B , and ϵ
- ullet ψ is coloured o strong collider bounds!
 - $m_{\psi} \gtrsim 590 \text{ GeV}$
 - $m_X \gtrsim 295 \text{ GeV}$

Annihilation to quarks: numerical results

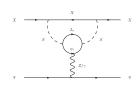
- ullet 6 parameters: m_X , m_ψ , m_S , λ_X , λ_B , and ϵ
- ψ is coloured \rightarrow strong collider bounds!
 - $m_{\psi} \gtrsim 590 \text{ GeV}$
 - $m_X \gtrsim 295 \text{ GeV}$


Constraints and signals

- We consider (briefly) the three most important constraints/observable effects:
- Direct detection
- Indirect detection
- Colliders

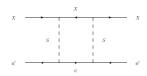
Constraints and signals: direct detection

Annihilation to leptons:


- Only couples to nucleons through 2-loop moment
- Cross section too small

Constraints and signals: direct detection

Annihilation to leptons:


- Only couples to nucleons through 2-loop moment
- Cross section too small

Annihilation to quarks:

Couples at one-loop:

$$\sigma_{X-N} \sim \frac{1}{16\pi} \left(\frac{\lambda_B^2 \lambda_X^2}{16\pi^2}\right)^2 \, \frac{\mu^2}{m_X^4} \label{eq:sigmaX}$$

- Benchmark points:
 - ① $m_X=4.25$ TeV, $m_\psi=7.25$ TeV, $m_S=5$ TeV, $\lambda_X=2.7$ and $\lambda_B=4.5$: $\sigma_{X-N}\approx 1\times 10^{-44}~{\rm cm}^2$
 - ② $m_X=0.9$ TeV, $m_\psi=1.2$ TeV, $m_S=1.5$ TeV, $\lambda_X=0.22$ and $\lambda_B=2.8$: $\sigma_{X-N}\approx 4\times 10^{-46}~{\rm cm}^2$

Constraints and signals: indirect detection

- Both scenarios annihilate to quarks
- Best prospect for indirect detection: antideuterons
 - Very low astrophysical backgrounds at low energies
 - Donato, Fornengo, Salati 2000; Baer, Profumo 2005; Cui, Mason, Randall 2010

Constraints and signals: indirect detection

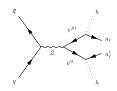
- Both scenarios annihilate to quarks
- Best prospect for indirect detection: antideuterons
 - Very low astrophysical backgrounds at low energies
 - Donato, Fornengo, Salati 2000; Baer, Profumo 2005; Cui, Mason, Randall 2010

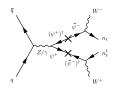
Annihilation to leptons:

- $XX \to W^{\pm}$, h
- Hadronization in boosted frame
- Mass constraint reach $\mathcal{O}(100~{\rm GeV})$

Annihilation to quarks:

- $XX o \text{color-connected } \bar{u}\bar{d}\bar{d}$
- Some hadronization in rest frame
- Low-energy antideuterons!
- ullet Can exclude up to $m_X \sim {\sf TeV}$

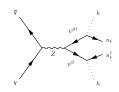

• In general, phenomenology is model-dependent


- In general, phenomenology is model-dependent
- ullet In both scenarios we considered, ψ decays to gauge singlets
 - Expect signatures with missing energy (SUSY searches apply)

- In general, phenomenology is model-dependent
- ullet In both scenarios we considered, ψ decays to gauge singlets
 - Expect signatures with missing energy (SUSY searches apply)

Leptogenesis:

$$\mathcal{L} \supset \lambda_i' \, \psi \, n \, H^{\dagger}$$

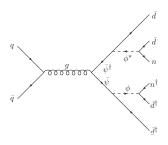


- ullet Strongest bound comes from chargino searches at LEP $(m_\psi \gtrsim 100 \ {
 m GeV})$
 - $\tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}^0 \to jj \, \tilde{\chi}^0$

- In general, phenomenology is model-dependent
- ullet In both scenarios we considered, ψ decays to gauge singlets
 - Expect signatures with missing energy (SUSY searches apply)

Leptogenesis:

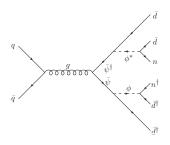
$$\mathcal{L} \supset \lambda_i' \, \psi \, n \, H^{\dagger}$$



$$\bar{q}$$
 $W^ \bar{\psi}^ Z/\gamma_{\psi^+}$
 $(\bar{\psi}^-)^{\dagger}$
 N_{ℓ}
 W^+

- ullet Strongest bound comes from chargino searches at LEP $(m_\psi \gtrsim 100 \ {
 m GeV})$
 - $\tilde{\chi}^{\pm} \to W^{\pm} \, \tilde{\chi}^0 \to jj \, \tilde{\chi}^0$
- LHC not yet sensitive to electroweak production
 - lacktriangle May be able to find in targeted searches: b-tagging, reconstruct Higgs mass

Annihilation to quarks:


Annihilation to quarks:

$$\mathcal{L} \supset \lambda_i \, \bar{\psi}_i \, \bar{d}_i \, \phi^* + \lambda_i' \, \phi \, \bar{d}_i \, n_i$$

- Gluino-like topology with different group theory factors
- $4j + \cancel{E}_{\mathrm{T}}$ final state
- Current LHC bound excludes $m_{\psi} \lesssim 590 \text{ GeV}$

Annihilation to quarks:

$$\mathcal{L} \supset \lambda_i \, \bar{\psi}_i \, \bar{d}_i \, \phi^* + \lambda_i' \, \phi \, \bar{d}_i \, n_i$$

- Gluino-like topology with different group theory factors
- $4j + \cancel{E}_{\mathrm{T}}$ final state
- Current LHC bound excludes $m_{\psi} \lesssim 590~{\rm GeV}$

ullet LHC should test m_{ψ} up to ~ 2 TeV at $100~{
m fb}^{-1}$

Conclusions

- WIMPy baryogenesis: WIMP annihilations can generate a baryon asymmetry
- \bullet Can get correct relic density and baryon asymmetry with \sim TeV masses, $\mathcal{O}(1)$ couplings
 - ▶ Need $m_X \sim m_\psi$
- Baryon asymmetry generated at weak scale (directly or via leptogenesis)
- Examined possible signals at the LHC and in dark matter detection experiments

Back-up slides

Back-up slides

WIMPy leptogenesis: Boltzmann equations

Evolution of the asymmetry in one **component** of the L doublet:

$$\begin{split} \frac{H(m_X)}{z} \, \frac{dY_X}{dz} &= & -4s (\sigma_{XX \to L_i \psi_i} \, v) [Y_X^2 - (Y_X^{\text{eq}})^2] - 2s \epsilon_X \frac{\xi \, Y_{\Delta L_i}}{Y_{\gamma}} (\sigma_{XX \to L_i \psi_i} \, v) (Y_X^{\text{eq}})^2 \\ &- \text{Br}_X^2 \langle \Gamma_S \rangle Y_S^{\text{eq}} \left(\frac{Y_X}{Y_X^{\text{eq}}} \right)^2 + \text{Br}_X \langle \Gamma_S \rangle \left(Y_S - \text{Br}_L \, Y_S^{\text{eq}} \right) - \epsilon \frac{\xi \, Y_{\Delta L_i}}{2 \, Y_{\gamma}} \, \text{Br}_X \, \text{Br}_L \langle \Gamma_S \rangle Y_S^{\text{eq}} \\ &\frac{H(m_X)}{z} \, \frac{dY_S}{dz} &= & -\langle \Gamma_S \rangle Y_S + \langle \Gamma_S \rangle Y_S^{\text{eq}} \left[\text{Br}_L + \text{Br}_X \left(\frac{Y_X}{Y_X^{\text{eq}}} \right)^2 \right] \\ &\frac{H(m_X)}{z \, \eta} \, \frac{dY_{\Delta L_i}}{dz} &= & \frac{\epsilon_S}{2} \, \text{Br}_L \langle \Gamma_S \rangle \left[Y_S + Y_S^{\text{eq}} \left(1 - 2 \text{Br}_L - \text{Br}_X \left[1 + \frac{Y_X^2}{(Y_X^{\text{eq}})^2} \right] \right) \right] + 2s \, \epsilon_X \langle \sigma_{XX \leftrightarrow L_i \psi_i} \, v \rangle \left[Y_X^2 - \frac{\xi \, Y_{\Delta L_i}}{Y_{\gamma}} \right] \\ &- \frac{\xi \, Y_{\Delta L_i}}{Y_{\gamma}} \left[s \, \langle \sigma_{XX \leftrightarrow L_i \psi_i} \, v \rangle \langle Y_X^{\text{eq}} \rangle^2 + 2s [\langle \sigma_{L_i \psi_i \leftrightarrow L_i^\dagger \psi_i^\dagger} \, v \rangle + \langle \sigma_{L_i \psi_i \leftrightarrow L_j^\dagger \psi_j^\dagger}^{(i \neq j)} \, v \rangle Y_L^{\text{eq}} Y_\psi^{\text{eq}} \right. \\ &- \frac{2\xi \, Y_{\Delta L_i}}{Y_{\gamma}} s \, \langle \sigma_{L_i \psi_j \leftrightarrow L_j^\dagger \psi_i^\dagger} \, v \rangle Y_L^{\text{eq}} Y_\psi^{\text{eq}} \\ &- \frac{\xi \, Y_{\Delta L_i}}{Y_{\gamma}} \left[s \, \langle \sigma_{X \psi_i \leftrightarrow X L_i^\dagger} \, v \rangle Y_X Y_\psi^{\text{eq}} + 2s \, \langle \sigma_{\psi_i \psi_i \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i^\dagger} \, v \rangle \langle Y_\psi^{\text{eq}} \rangle^2 + 2s \, \langle \sigma_{\psi_i \psi_j \leftrightarrow L_i^\dagger L_i$$

Back-up slides: chemical potential relations

- $\bullet \quad \text{The } \psi \text{ mass: } \mu_{\psi} = -\mu_{\bar{\psi}}.$
- ② The SU(2) sphalerons: $3\mu_Q + \mu_L = 0$.
- **3** The up quark Yukawa: $\mu_Q + \mu_H \mu_u = 0$.
- **1** The down quark Yukawa: $\mu_Q \mu_H \mu_d = 0$.
- **1** The lepton Yukawa: $\mu_L \mu_H \mu_E = 0$.
- The ψ Yukawa: $\mu_{\psi} \mu_H + \mu_{\chi} = 0$.
- Hypercharge conservation: $\mu_Q + 2\mu_u \mu_d \mu_L \mu_E + (\mu_\psi \mu_{\bar{\psi}}) \times (n_{\text{\tiny ab}}^{\text{eq}}/n_{\text{\tiny γ}}^{\text{eq}}) + 2\mu_H/3 = 0.$
- $\begin{array}{l} \textbf{ Onservation of generalized } B+\psi-L-\chi \text{ symmetry:} \\ 2\mu_Q+\mu_u+\mu_d-2\mu_L-\mu_E-\mu_\chi+2(\mu_\psi-\mu_{\bar\psi})\times(n_\psi^{\rm eq}/n_\gamma^{\rm eq})=0. \end{array}$

Back-up slides: chemical potential solutions

$$\mu_{Q} = -\frac{1}{3}\mu_{L},$$

$$\mu_{u} = \frac{5 - 19r}{21 + 84r}\mu_{L},$$

$$\mu_{d} = -\frac{19 + 37r}{21 + 84r}\mu_{L},$$

$$\mu_{E} = \frac{3 + 25r}{7 + 28r}\mu_{L},$$

$$\mu_{H} = \frac{4 + 3r}{7 + 28r}\mu_{L},$$

$$\mu_{\chi} = -\frac{79 - 9r}{21 + 84r}\mu_{L},$$

$$\mu_{\psi} = \frac{13}{3 + 12r}\mu_{L},$$

- How do other interactions change our results?
- Assume that we have accounted for all lepton number violation, but there are new lepton-number-preserving DM annihilation modes

- How do other interactions change our results?
- Assume that we have accounted for all lepton number violation, but there are new lepton-number-preserving DM annihilation modes
- Parameterize by

$$\alpha \equiv \frac{\langle \sigma_{XX \to \text{anything } v} \rangle}{\langle \sigma_{XX \to L\psi} \, v \rangle} \ge 1$$

- How do other interactions change our results?
- Assume that we have accounted for all lepton number violation, but there are new lepton-number-preserving DM annihilation modes
- Parameterize by

$$\alpha \equiv \frac{\langle \sigma_{XX \to \text{anything } v} \rangle}{\langle \sigma_{XX \to L\psi} \, v \rangle} \ge 1$$

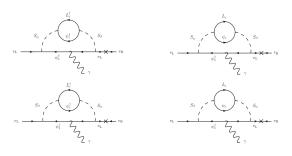
Enhancement of asymmetry:

- Since $\sigma_{\rm ann} \to \alpha \, \sigma_{\rm ann}$, then $\lambda_L \to \lambda_L/\sqrt{\alpha}$
 - Makes washout earlier, so asymmetry is larger

- How do other interactions change our results?
- Assume that we have accounted for all lepton number violation, but there are new lepton-number-preserving DM annihilation modes
- Parameterize by

$$\alpha \equiv \frac{\langle \sigma_{XX \to \text{anything } v} \rangle}{\langle \sigma_{XX \to L\psi} \, v \rangle} \ge 1$$

Enhancement of asymmetry:


- Since $\sigma_{\rm ann} \to \alpha \, \sigma_{\rm ann}$, then $\lambda_L \to \lambda_L/\sqrt{\alpha}$
 - Makes washout earlier, so asymmetry is larger

Suppression of asymmetry:

- \bullet Fraction of annihilations generating an asymmetry if $1/\alpha$, so $Y_{\Delta B} \to Y_{\Delta B}/\alpha$
- Maximum allowed ϵ is smaller because λ_L is smaller: $\epsilon \to \epsilon/\sqrt{\alpha}$

Constraints and signals: EDMs

- ullet Expect large CP phases to contribute to EDMs o CP problem
- New physics couples only to either LH or RH fields
 - Loops are helicity-preserving, so equal number of λ and λ^* insertions

$$\frac{d}{e} \sim \sum_{i} \operatorname{Im}(\lambda_{\alpha 1} \lambda_{\alpha i} \lambda_{\beta 1}^{*} \lambda_{\beta i}^{*} + \lambda_{\alpha 1} \lambda_{\alpha i}^{*} \lambda_{\beta 1} \lambda_{\beta i}^{*} + \text{c.c.}) = 0$$

- Vanishes when summed over permutations of internal lines!
 - ▶ No CP problem $\rightarrow d/e < 10^{-30} \text{ e} \cdot \text{cm}$